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Petaflop Computing: Planning Ahead

James R. McGraw
Lawrence Livermore National Laboratory

This talk considers the problem of defining success criteria for petaflop computers.
Current expectations for teraflop systems show an alarming acceleration of a trend we
have seen for many years in high performance computers. Namely, it is becoming
increasingly difficult to effectively use the computational capability of these machines. If
this situation is not reversed quickly, the term “petaflop computer” may simply mean the
next fastest computer that we cannot use. In many cases, we have some understanding of
why we cannot achieve anywhere near the peak performance of these machines on real
applications. Effective use of these resources is a highly complex optimization problem
that must be solved over all of the different components of cach application program.
Given this complexity, it is the responsibility of our community to better quantify our
progress in developing high performance systems with more meaningful metrics than
simply “peak floating point operations per second.” We need to develop metrics and
tools that help us to enhance the end-to-end performance of solving large scientific
applications on these advanced machines.

Based on current trends. teraflop systems of next few years could render the term
“petaflop” practically meaningless. Going back to the days of vector supercomputing, it
was common to find that large scientific applications could only achieve 30-70% of the
peak rated speed of a machine. With distributed memory systems, the percent of peak
often has been seen to be between 15-40%. For the new class of teraflop systems, some
application developers have suggested that delivered performance on real scientific
applications could be as low as 1-10%.

We have a general understanding of the causes of poor performance. As we scale up
these systems, not all components are scaling at the same rate. Most architectures have
included deep instruction pipelines, multi-level caches, greater numbers of processors,
and more highly distributed partitions of main memory. At the same time. the
computational algorithms have become less regular and less predictable in terms of their
resource requirements. Techniques like adaptive meshes, unstructured grids, and Monte
Carlo transport pose serious problems for dynamic load balancing and global
communications. In the middle of these dramatic changes, key software tools like
compilers and run-time systems have not been able to provide adequate solutions, so they
continue to be a critical portion of the problem.

Given the “sins of the teraflops,” the focus of improved metrics must center somehow on
better conveying what level of performance a complete application can expect to achieve.
The performance numbers described above depend precisely on problems being solved
and the algorithms being used to solve them. Embarrassingly parallel algorithms and
applications can often exceed these numbers while algorithms with non-trivial sequential
sections will be much worse. The simple metric of FLOPS completely fails to convey



how well (or poorly) someone will be in using these machines to solve large scientific
problems. If we are going to convince scientists and Congress to invest in petaflops, we
will need to more clearly communicate what kind of true performance on real problems
can be expected. '

We can translate this long-term need into some specific areas of work that require
immediate attention. These areas can help build up our understanding of the end-to-end
performance of large applications on these machines. In this case, end-to-end
performance refers to the process of evolving application demands into numerical
algorithms that are translated into machine form and executed on a complex platform
including processors, memory, networks, mass storage and /O devices. One step to
understanding end-to-end performance is to better characterize the potential performance
of applications in terms of key system parameters. For example, what is the data locality
of an algorithm as the size of the problem increases (possibly expressed as the working
set miss rate as a function of the working set size). This kind of information could have a
very beneficial impact on both cache hit rates and data partitioning across nodes.
Likewise, another key step is in characterizing the performance of the full computer
system in terms of relevant application parameters. For a given machine configuration,
what level of cache hit rates, compute-to-communicate ratios, and compute-to-1/0 ratios
must be sustained to achieve different efficiency levels? This type of information flow
between the applications and architecture developers will be necessary to enable even
reasonable utilization of petaflop systems.
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